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IMPORTANCE Application of deep learning algorithms to whole-slide pathology images can
potentially improve diagnostic accuracy and efficiency.

OBJECTIVE Assess the performance of automated deep learning algorithms at detecting
metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with
breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting.

DESIGN, SETTING, AND PARTICIPANTS Researcher challenge competition (CAMELYON16) to
develop automated solutions for detecting lymph node metastases (November
2015-November 2016). A training data set of whole-slide images from 2 centers in the
Netherlands with (n = 110) and without (n = 160) nodal metastases verified by
immunohistochemical staining were provided to challenge participants to build algorithms.
Algorithm performance was evaluated in an independent test set of 129 whole-slide images
(49 with and 80 without metastases). The same test set of corresponding glass slides was
also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands
to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session,
simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

EXPOSURES Deep learning algorithms submitted as part of a challenge competition or
pathologist interpretation.

MAIN OUTCOMES AND MEASURES The presence of specific metastatic foci and the absence vs
presence of lymph node metastasis in a slide or image using receiver operating characteristic
curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic
confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

RESULTS The area under the receiver operating characteristic curve (AUC) for the algorithms
ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level,
true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI,
64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the
whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999])
performed significantly better than the pathologists WTC in a diagnostic simulation (mean
AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was
comparable with the pathologist interpreting the slides in the absence of time constraints
(mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI,
0.927-0.998] for the pathologist WOTC).

CONCLUSIONS AND RELEVANCE In the setting of a challenge competition, some deep learning
algorithms achieved better diagnostic performance than a panel of 11 pathologists
participating in a simulation exercise designed to mimic routine pathology workflow;
algorithm performance was comparable with an expert pathologist interpreting whole-slide
images without time constraints. Whether this approach has clinical utility will require
evaluation in a clinical setting.
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F ull digitalization of the microscopic evaluation of stained
tissue sections in histopathology has become feasible in
recent years because of advances in slide scanning tech-

nology and cost reduction in digital storage. Advantages of digi-
tal pathology include remote diagnostics, immediate avail-
ability of archival cases, and easier consultations with expert
pathologists.1 Also, the possibility for computer-aided diag-
nostics may be advantageous.2

Computerized analysis based on deep learning (a ma-
chine learning method; eAppendix in the Supplement) has
shown potential benefits as a diagnostic strategy. Gulshan
et al3 and Esteva et al4 demonstrated the potential of deep
learning for diabetic retinopathy screening and skin lesion clas-
sification, respectively. Analysis of pathology slides is also an
important application of deep learning, but requires evalua-
tion for diagnostic performance.

Accurate breast cancer staging is an essential task per-
formed by pathologists worldwide to inform clinical manage-
ment. Assessing the extent of cancer spread by histopatho-
logical analysis of sentinel axillary lymph nodes (SLNs) is an
important part of breast cancer staging. The sensitivity of SLN
assessment by pathologists, however, is not optimal. A retro-
spective study showed that pathology review by experts
changed the nodal status in 24% of patients.5 Furthermore, SLN
assessment is tedious and time-consuming. It has been shown
that deep learning algorithms could identify metastases in SLN
slides with 100% sensitivity, whereas 40% of the slides with-
out metastases could be identified as such.6 This could result
in a significant reduction in the workload of pathologists.

The aim of this study was to investigate the potential of
machine learning algorithms for detection of metastases in SLN
slides and compare these with the diagnoses of pathologists.
To this end, the Cancer Metastases in Lymph Nodes Chal-
lenge 2016 (CAMELYON16) competition was organized.
Research groups around the world were invited to produce an
automated solution for breast cancer metastases detection in
SLNs. Once developed, the performance of each algorithm was
compared with the performance of a panel of 11 pathologists
participating in a simulation exercise intended to mimic pa-
thology workflow.

Methods
Image Data Sets
To enable the development of diagnostic machine learning al-
gorithms, we collected 399 whole-slide images and corre-
sponding glass slides of SLNs during the first half of 2015. SLNs
were retrospectively sampled from 399 patients that under-
went surgery for breast cancer at 2 hospitals in the Nether-
lands: Radboud University Medical Center (RUMC) and Uni-
versity Medical Center Utrecht (UMCU). The need for informed
consent was waived by the institutional review board of RUMC.
Whole-slide images were deidentified before making them
available. To enable the assessment of algorithm perfor-
mance for slides with and without micrometastases and mac-
rometastases, stratified random sampling was performed on
the basis of the original pathology reports.

The whole-slide images were acquired at 2 different cen-
ters using 2 different scanners. RUMC images were produced
with a digital slide scanner (Pannoramic 250 Flash II;
3DHISTECH) with a 20x objective lens (specimen-level pixel
size, 0.243 μm × 0.243 μm). UMCU images were produced
using a digital slide scanner (NanoZoomer-XR Digital slide
scanner C12000-01; Hamamatsu Photonics) with a 40x ob-
jective lens (specimen-level pixel size, 0.226 μm × 0.226 μm).

Reference Standard
All metastases present in the slides were annotated under the
supervision of expert pathologists. The annotations were first
manually drawn by 2 students (1 from each hospital) and then
every slide was checked in detail by 1 of the 2 pathologists
(PB from RUMC and PvD from UMCU; eFigure 1 in the Supple-
ment). In clinical practice, pathologists may opt to use immu-
nohistochemistry (IHC) to resolve diagnostic uncertainty.
In this study, obvious metastases were annotated without
the use of IHC, whereas for all difficult cases and all cases ap-
pearing negative on hematoxylin and eosin–stained slides,
IHC (anti-cytokeratin [CAM 5.2], BD Biosciences) was used
(eFigure 2 in the Supplement). This minimizes false-negative
interpretations. IHC is the most accurate method for metas-
tasis evaluation and has little interpretation variability.7-9

In clinical practice, pathologists differentiate between mac-
rometastases (tumor cell cluster diameter ≥2 mm), microme-
tastases (tumor cell cluster diameter from >0.2 mm to <2 mm)
and isolated tumor cells (solitary tumor cells or tumor cell clus-
ters with diameter ≤0.2 mm or less than 200 cells). The larg-
est available metastasis determines the slide-based diagno-
sis. Because the clinical value of having only isolated tumor
cells in an SLN is disputed, we did not include such slides in
our study and also did not penalize missing isolated tumor cells
in slides containing micrometastases or macrometastases.
Isolated tumor cells were, however, annotated in slides con-
taining micrometastases and macrometastases by the patholo-
gists and included in the training whole-slide images. The set
of images was randomly divided into a training (n = 270) and
a test set (n = 129; details in Table 1). Both sets included slides
with both micrometastatic and macrometastatic tumor foci as
encountered in routine pathology practice.

Key Points
Question What is the discriminative accuracy of deep learning
algorithms compared with the diagnoses of pathologists in
detecting lymph node metastases in tissue sections of women
with breast cancer?

Finding In cross-sectional analyses that evaluated 32 algorithms
submitted as part of a challenge competition, 7 deep learning
algorithms showed greater discrimination than a panel of 11
pathologists in a simulated time-constrained diagnostic setting,
with an area under the curve of 0.994 (best algorithm) vs 0.884
(best pathologist).

Meaning These findings suggest the potential utility of deep
learning algorithms for pathological diagnosis, but require
assessment in a clinical setting.
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Coding Challenge
In the first stage (training) of the CAMELYON16 competition,
participants were given access to 270 whole-slide images
(training data set: 110 with nodal metastases, 160 without
nodal metastases) of digitally scanned tissue sections. Each
SLN metastasis in these images was annotated enabling par-
ticipants to build their algorithms. In the second stage (evalu-
ation) of the competition, the performance of the partici-
pants’ algorithms was tested on a second set of 129 whole-
slide images (test data set: 49 with nodal metastases, 80
without nodal metastases) lacking annotation of SLN metas-
tases. The output of each algorithm was sent to the challenge
organizers by the participants for independent evaluation.
Each team was allowed to make a maximum of 3 submis-
sions. The submission number was indicated in each team’s
algorithm name by Roman numeral. Multiple submissions
were only allowed if the methodology of the new submission
was distinct.

Tasks and Evaluation Metrics
Two tasks were defined: identification of individual metasta-
ses in whole-slide images (task 1) and classification of every
whole-slide image as either containing or lacking SLN metas-
tases (task 2). The tasks had different evaluation metrics and
consequently resulted in 2 independent algorithm rankings.

Task 1: Identification of Individual Metastases
In task 1, algorithms were evaluated for their ability to iden-
tify specific metastatic foci in a whole-slide image. Challenge
participants provided a list of metastasis locations. For each
location participants provided a confidence score that could
range from 0 (indicating certainty that metastasis was
absent) to 1 (certainty that metastasis was present) and could
take on any real-number value in between. Algorithms were
compared using a measure derived from the free-response
receiver operator characteristic curve (FROC).10 The FROC
curve shows the lesion-level, true-positive fraction (sensitiv-
ity) vs the mean number of false-positive detections in
metastasis-free slides only. The FROC true-positive fraction
score that ranked teams in the first task was defined as the
mean true-positive fraction at 6 predefined false-positive
rates: ¼ (meaning 1 false-positive result in every 4 whole-
slide images), ½, 1, 2, 4, and 8 false-positive findings per
whole-slide image. Details on detection criteria for indi-

vidual lesions can be found in the eMethods in the Supple-
ment. All analyses in task 1 were determined with whole-
slide images (algorithms and the pathologist without time
constraint [WOTC]).

Task 2: Classification of Metastases
Task 2 evaluated the ability of the algorithms to discriminate
between 49 whole-slide images with SLN metastases vs 80
without SLN metastases (control). In this case, identification
of specific foci within images was not required. Participants
provided a confidence score, using the same rating schema as
task 1, indicating the probability that each whole-slide image
contained any evidence of SLN metastasis from breast can-
cer. The area under the receiver operating characteristic
curve (AUC) was used to compare the performance of the
algorithms. Algorithms assessed whole-slide images, as did
the pathologist WOTC. The panel of 11 pathologists with time
constraint (pathologists WTC), however, did their assessment
on the corresponding glass slides for those images because
diagnosing is most commonly done using a microscope in
pathology labs.

Performance of Pathologists
Pathologist Without Time Constraint
To establish a baseline for pathologist performance, 2 experi-
ments were conducted using the 129 slides in the test set,
corresponding to the tasks defined above. In the first experi-
ment, 1 pathologist (MCRFvD, >10 years of experience in
pathology diagnostics, >2 years of experience in assessing
digitized tissue sections) marked every single metastasis on a
computer screen using high magnification. This task was per-
formed without any time constraint. For comparison with the
algorithms on task 2, the pathologist WOTC indicated (during
the same session) the locations of any (micro or macro)
metastases per whole-slide image.

Panel of Pathologists With Time Constraint
Assessment without time constraint does not yield a fair
measure of the accuracy of the routine diagnostic process.
Preliminary experiments with 4 independent pathologists
determined that 2 hours was a realistic amount of time
for reviewing these 129 whole-slide images. To mimic rou-
tine diagnostic pathology workflow, we asked 11 patholo-
gists to independently assess the 129 slides in the test set in

Table 1. Characteristics of the Whole-Slide Images and Glass Slides in the Data Sets Used in the CAMELYON16 Challenge

Data Set
(N = 399 Slides
and Images)a

Hospital Providing
the Slides and Images

Primary Tumor Histotypeb Slides Containing Metastases, No. No. of Lesions
per Slide or Image,
Median (Range)

Total Slides
or ImagesIDC Non-IDC None Macro Micro

Training
(n = 270 images)

RUMC 54 16 100 35 35 2 (1-20) 170

UMCU 30 10 60 26 14 3 (1-27) 100

Test
(n=129 slides
and images)

RUMC 23 6 50 14 15 2 (1-14) 79

UMCU 15 5 30 8 12 3 (1-25) 50

Abbreviations: CAMELYON16, Cancer Metastases in Lymph Nodes Challenge
2016; IDC, infiltrating ductal carcinoma; RUMC, Radboud University Medical
Center; UMCU, University Medical Center Utrecht.
a All analyses in the training set were determined with whole-slide images.

Analyses in the test were determined with whole-slide images by the
algorithms and with glass slides by the panel of 11 pathologists (because
diagnosing is most commonly done using a microscope in pathology labs).

b Primary tumor histotypes included IDC and other histotypes (non-IDC).
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a simulation exercise with time constraint (pathologists
WTC) for task 2. A flexible 2-hour time limit was set
(exceeding this limit was not penalized and every patholo-
gist was allowed time to finish the entire set). All patholo-
gists participating in this study were informed of and agreed
with the rationale and goals of this study and participated
on a voluntary basis. The research ethics committee deter-
mined that the pathologists who participated in the review
panel did not have to provide written informed consent.
The panel of the 11 pathologists (mean age, 47.7 years
[range, 31-61]) included 1 resident pathologist (3-year resi-
dent) and 10 practicing pathologists (mean practicing years,
16.4 [range, 0-30]; 0 indicates 1 pathologist who just fin-
ished a 5-year residency program). Three of these patholo-
gists had breast pathology as a special interest area.

The panel of 11 pathologists WTC assessed the glass slides
using a conventional light microscope and determined
whether there was any evidence of SLN metastasis in each
image. This diagnostic task was identical to that performed
by the algorithms in task 2. The pathologists WTC assessed
the same set of glass slides used for testing the algorithms
(which used digitized whole-slide images of these glass
slides). Pathologists indicated the level of confidence in their
interpretation for each slide using 5 levels: definitely normal,
probably normal, equivocal, probably tumor, definitely
tumor. To obtain an empirical ROC curve, the threshold was
varied to cover the entire range of possible ratings by the
pathologists, and the sensitivity was plotted as a function of
the false-positive fraction (1-specificity). To get estimates
of sensitivity and specificity for each pathologist, the 5 levels
of confidence were dichotomized by considering the confi-
dence levels of definitely normal and probably normal as a
negative finding and all other levels as positive findings.

Algorithm Teams
Between November 2015 and November 2016, 390 research
teams signed up for the challenge. Twenty-three teams sub-
mitted 32 algorithms for evaluation by the closing date (for de-
tails, see eTable 3 and eMethods in the Supplement).

Statistical Analysis
All statistical tests used in this study were 2-sided and a P value
less than .05 was considered significant.

For tasks 1 and 2, CIs of the FROC true-positive fraction
scores and AUCs were obtained using the percentile boot-
strap method11 for the algorithms, the pathologists WTC, and
the pathologist WOTC. The AUC values for the pathologists
(WTC and WOTC) were calculated based on their provided
5-point confidence scores.

To compare the AUC of the individual algorithms with the
pathologists WTC in task 2, multiple-reader, multiple-case
(MRMC) ROC analysis was used. The MRMC ROC analysis para-
digm is frequently used for evaluating the performance of
medical image interpretation and allows the comparison of
multiple readers analyzing the same cases while accounting
for the different components of variance contributing to the
interpretations.12,13 Both the panel of readers and the algo-
rithms as well as the cases were treated as random effects in

this analysis. The pathologists WTC represent the multiple
readers for modality 1 (diagnosing on glass slides; modality rep-
resents the technology with which the dataset is shown to
the readers) and an algorithm represents the reader for mo-
dality 2 (diagnosing on whole-slide images). Cases were the
same set of slides or images seen by the panel and the algo-
rithm. The AUC was the quantitative measure of perfor-
mance in this analysis. The Dorfman-Berbaum-Metz signifi-
cance testing with Hillis improvements14 was performed to test
the null hypothesis that all effects were 0. The Bonferroni cor-
rection was used to adjust the P values for multiple compari-
sons in the MRMC ROC analysis (independent comparison of
each of the 32 algorithms and the pathologists WTC).

Additionally, a permutation test15 was performed to as-
sess whether there was a statistically significant difference be-
tween the AUC of the pathologists (WTC and WOTC) detect-
ing macrometastases compared with micrometastases.16

This test was also repeated for comparing the performance of
pathologists for different histotypes: infiltrating ductal can-
cer vs all other histotypes. Because the 80 control slides (not
containing metastases) were the same in both groups, the per-
mutation was only performed across the slides containing me-
tastases. This test was performed for each individual patholo-
gist and, subsequently, Bonferroni correction was applied to
the obtained P values.

No prior data were available for the performance of algo-
rithms in this task. Therefore, no power analysis was used to
predetermine the sample size.

The iMRMC (Food and Drug Administration), version 3.2,17

was used for MRMC analysis. An in-house developed script in
Python (Babak Ehteshami Bejnordi, MS; Radboud University
Medical Center), version 2.7,18 was used to obtain the percen-
tile bootstrap CIs for the FROC and AUC scores. A custom script
was written to perform the permutation tests and can be found
at the same location.

Results
The pathologist WOTC required approximately 30 hours for
assessing 129 whole-slide images. No false-positives were
produced in task 1 (ie, nontumorous tissue indicated as
metastasis) by the pathologist WOTC, but 27.6% of indi-
vidual metastases were not identified (lesion level, true-
positive fraction, 72.4% [95% CI, 64.3%-80.4%]) that mani-
fested when IHC staining was performed. At the slide level
in task 2, the pathologist WOTC achieved a sensitivity of
93.8% (95% CI, 86.9%-100.0%), a specificity of 98.7% (95%
CI, 96.0%-100.0%), and an AUC of 0.966 (95% CI, 0.927-
0.998). The pathologists WTC in the simulation exercise
spent a median of 120 minutes (range, 72-180 minutes) for
129 slides. They achieved a mean sensitivity of 62.8% (95%
CI, 58.9%-71.9%) with a mean specificity of 98.5% (95% CI,
97.9%-99.1%). The mean AUC was 0.810 (range, 0.738-
0.884) (eTables 1-2 in the Supplement show results for indi-
vidual pathologists WTC). eFigure 3 in the Supplement
shows the ROC curves for each of the 11 pathologists WTC
and the pathologist WOTC.
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The results of the pathologists WTC were further ana-
lyzed for their ability to detect micrometastases vs macrome-
tastases (eResults in the Supplement). The panel of 11
pathologists had a mean sensitivity of 92.9% (95% CI, 90.5%-
95.8%) and mean AUC of 0.964 (range, 0.924-1.0) for detect-
ing macrometastases compared with a mean sensitivity of
38.3% (95% CI, 32.6%-52.9%) and a mean AUC of 0.685
(range, 0.582-0.808) for micrometastases. Even the best per-
forming pathologist in the panel missed 37.1% of the cases
with only micrometastases.

Algorithm Performance
Of the 23 teams, the majority of submitted algorithms
(25 of 32 algorithms) were based on deep convolutional neu-
ral networks (eAppendix in the Supplement). Besides deep
learning, a variety of other approaches were attempted by
CAMELYON16 participants. Different statistical and structural
texture features were extracted (eg, color scale-invariant fea-
ture transform [SIFT] features,19 local binary patterns,20

features based on gray-level co-occurrence matrix21) com-
bined with widely used supervised classifiers (eg, support
vector machines,22 random forest classifiers23). The perfor-
mance and ranking of the entries for the 2 tasks are shown
in Table 2. Overall, deep learning–based algorithms per-
formed significantly better than other methods: the 19 top-
performing algorithms in both tasks all used deep convolu-
tional neural networks as the underlying methodology
(Table 2). Detailed method description for the participating
teams can be found in the eMethods in the Supplement.

Task 1: Metastasis Identification
The results of metastasis identification, as measured by the
FROC true-positive fraction score, are presented in Table 2
(eTable 4 in the Supplement provides a more detailed sum-
mary of the results for the FROC analysis). The best algo-
rithm, from team Harvard Medical School (HMS) and
Massachusetts Institute of Technology (MIT) II, achieved an
overall FROC true-positive fraction score of 0.807 (95% CI,
0.732-0.889). The algorithm by team HMS and Massachu-
setts General Hospital (MGH) III ranked second in task 1, with
an overall score of 0.760 (95% CI, 0.692-0.857). Figure 1
presents the FROC curves for the top 5 performing systems
in task 1 (for FROC curves of all algorithms, see eFigure 4 in
the Supplement). Figure 2 shows several examples of metas-
tases in the test set of CAMELYON16 and the probability maps
produced by the top 3 ranked algorithms (eFigure 5 in the
Supplement).

Task 2: Whole-Slide Image Classification
The results for all automated systems, sorted by their perfor-
mance, are presented in Table 2. Figure 3A-B show the ROC
curves of the top 5 teams along with the operating points of
the pathologists (WOTC and WTC). eFigure 6 in the Supplement
shows the ROC curves for all algorithms. All 32 algorithms were
compared with the panel of pathologists using MRMC ROC
analysis (Table 2).

The top-performing algorithm by team HMS and MIT II
used a GoogLeNet architecture,24 which outperformed all

other CAMELYON16 submissions with an AUC of 0.994 (95%
CI, 0.983-0.999). This AUC exceeded the mean performance
of the pathologists WTC (mean AUC, 0.810 [range, 0.738-
0.884]) in the diagnostic simulation exercise (P < .001, calcu-
lated using MRMC ROC analysis33) (Table 2). The top-
performing algorithm had an AUC comparable with that of
the pathologist WOTC (AUC, 0.966 [95% CI, 0.927-0.998]).
Additionally, the operating points of all pathologists WTC
were below the ROC curve of this method (Figure 3A-B). The
ROC curves for the 2 leading algorithms, the pathologist
WOTC, the mean ROC curve of the pathologists WTC, and the
pathologists WTC with the highest and lowest AUCs are
shown in Figure 3C-D.

The second-best performing algorithm by team HMS and
MGH III used a fully convolutional ResNet-10125 architecture.
This algorithm achieved an overall AUC of 0.976 (95% CI,
0.941-0.999), and yielded the highest AUC in detecting mac-
rometastases (AUC, 1.0). An earlier submission by this team,
HMS and MGH I, achieved an overall AUC of 0.964 (95% CI,
0.928-0.989) and ranked third. The fourth highest–ranked
team was CULab (Chinese University Lab) III with a 16-layer
VGG-net architecture,26 followed by HMS and MIT I, with a
22-layer GoogLeNet architecture. Overall, 7 of the 32 submit-
ted algorithms had significantly higher AUCs than the
pathologists WTC (see Table 2 for the individual P values cal-
culated using MRMC ROC analysis).

The results of the algorithms were further analyzed for
comparing their performance in detecting micrometastases
and macrometastases (eResults and eTable 5 in the Supple-
ment). The top-performing algorithms performed similarly to
the best performing pathologists WTC in detecting macrome-
tastases. Ten of the top-performing algorithms achieved a
better mean AUC in detecting micrometastases than the AUC
for the best pathologist WTC (0.885 [range, 0.812-0.997] for
the top 10 algorithms vs 0.808 [95% CI, 0.704-0.908] for the
best pathologist WTC).

Discussion
The CAMELYON16 challenge demonstrated that some deep
learning algorithms were able to achieve a better AUC than a
panel of 11 pathologists WTC participating in a simulation ex-
ercise for detection of lymph node metastases of breast can-
cer. To our knowledge, this is the first study that shows that
interpretation of pathology images can be performed by deep
learning algorithms at an accuracy level that rivals human per-
formance.

To obtain an upper limit on what level of performance
could be achieved by visual assessment of hematoxylin and
eosin–stained tissue sections, a single pathologist WOTC
evaluated whole-slide images at high magnification in
details and marked every single cluster of tumor cells. This
took the pathologist WOTC 30 hours for 129 slides, which is
infeasible in clinical practice. Although this pathologist was
very good at differentiating metastases from false-positive
findings, 27.6% of metastases were missed compared with
the reference standard obtained with the use of IHC staining
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Table 2. Test Data Set Results of the 32 Submitted Algorithms vs Pathologists for Tasks 1 and 2 in the CAMELYON16 Challengea

Codenameb

Task 1:
Metastasis
Identification

Task 2:
Metastases
Classification P Value for Comparison

of the Algorithm
vs Pathologists WTCd

Algorithm Model

Comments
FROC Score
(95% CI)c

AUC
(95% CI)c

Deep
Learning Architecture

HMS and MIT II 0.807
(0.732-0.889)

0.994
(0.983-0.999)

<.001 � GoogLeNet24 Ensemble of 2 networks; stain
standardization; extensive data
augmentation; hard negative mining

HMS and MGH III 0.760
(0.692-0.857)

0.976
(0.941-0.999

<.001 � ResNet25 Fine-tuned pretrained network;
fully convolutional network

HMS and MGH I 0.596
(0.578-0.734)

0.964
(0.928-0.989)

<.001 � GoogLeNet24 Fine-tuned pretrained network

CULab III 0.703
(0.605-0.799)

0.940
(0.888-0.980)

<.001 � VGG-1626 Fine-tuned pretrained network;
fully convolutional network

HMS and MIT I 0.693
(0.600-0.819)

0.923
(0.855-0.977)

.11 � GoogLeNet24 Ensemble of 2 networks;
hard negative mining

ExB I 0.511
(0.363-0.620)

0.916
(0.858-0.962)

.02 � ResNet25 Varied class balance during training

CULab I 0.544
(0.467-0.629)

0.909
(0.851-0.954)

.04 � VGG-Net26 Fine-tuned pretrained network

HMS and MGH II 0.729
(0.596-0.788)

0.908
(0.846-0.961)

.04 � ResNet25 Fine-tuned pretrained network

CULab II 0.527
(0.335-0.627)

0.906
(0.841-0.957)

.16 � VGG-Net26 &
ResNet25

Fine-tuned pretrained network;
cascaded a VGG-Net that operated
on low magnification images and a
ResNet model that refined the results

DeepCare I 0.243
(0.197-0.356)

0.883
(0.806-0.943)

>.99 � GoogLeNet24 Fine-tuned pretrained network

Quincy Wong I 0.367
(0.250-0.521)

0.865
(0.789-0.924)

>.99 � SegNet27 Fine-tuned pretrained network

Middle East Technical
University I

0.389
(0.272-0.512)

0.864
(0.786-0.927)

>.99 � 4-layer CNN Custom confidence filtering for
postprocessing

NLP LOGIX I 0.386
(0.255-0.511)

0.830
(0.742-0.899)

>.99 � AlexNet28 Used a second-stage random forest
classifier to generate slide scores

Smart Imaging II 0.339
(0.239-0.420)

0.821
(0.753-0.894)

>.99 � GoogLeNet24 Used an ensemble of the output from
the team’s first entry and the
GoogLeNet model

University of Toronto I 0.382
(0.286-0.515)

0.815
(0.722-0.886)

>.99 � VGG-Net26 Combined the output of multiple CNNs
trained on different magnifications by
computing their mean

Warwick-Qatar
University I

0.305
(0.219-0.397)

0.796
(0.711-0.871)

>.99 � U-Net29 Used stain normalization

Radboudumc I 0.575
(0.446-0.659)

0.779
(0.694-0.860)

>.99 � VGG-Net26 Extensive data augmentation;
second-stage CNN to generate
slide-level scores

Hochschule für Technik
und Wirtschaft-Berlin I

0.187
(0.112-0.250)

0.768
(0.665-0.853)

>.99 � CRFasRNN30 Fine-tuned pretrained network

University of Toronto II 0.352
(0.292-0.511)

0.762
(0.659-0.846)

>.99 � VGG-Net26 Combined the output of multiple CNNs
trained on different magnifications by
using an additional CNN

Tampere I 0.257
(0.171-0.376)

0.761
(0.662-0.837)

>.99 Random
Forests23

Used a large set of intensity and texture
features

Smart Imaging I 0.208
(0.119-0.306)

0.757
(0.663-0.839)

>.99 SVM22 &
Adaboost31

Cascaded SVM and Adaboost classifiers
using texture features

Osaka University I 0.347
(0.234-0.463)

0.732
(0.629-0.824)

>.99 � GoogLeNet24

CAMP-TUM II 0.273
(0.194-0.379)

0.735
(0.633-0.819)

>.99 � GoogLeNet24 Hard negative mining

University of
South Florida I

0.179
(0.116-0.242)

0.727
(0.611-0.823)

>.99 Random
Forests23

Used various intensity and texture
features

NSS I 0.165
(0.116-0.195)

0.727
(0.635-0.81)

>.99 Rule-based Multiple thresholds on several
nucleus-based features

Tampere II 0.252
(0.149-0.350)

0.713
(0.612-0.801)

>.99 � 7-layer CNN Self-designed network architecture

CAMP-TUM I 0.184
(0.127-0.243)

0.691
(0.580-0.787)

>.99 � Agg-Net32 Multiscale approach for analyzing
the images

Minsk Team I 0.227
(0.181-0.264)

0.689
(0.568-0.804)

>.99 � GoogLeNet24 Separate models for different data sets;
hard negative mining

VISILAB I 0.142
(0.080-0.203)

0.653
(0.551-0.748)

>.99 Random
Forests23

Used Haralick texture features21

(continued)
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to confirm the presence of tumor cells in cases for which
interpretation of slides was not clear. This illustrates the
relatively high probability of overlooking tumor cells in
hematoxylin and eosin–stained tissue sections. At the slide
level, a high overall sensitivity and specificity for the
pathologist WOTC was observed.

To estimate the accuracy of pathologists in a routine di-
agnostic setting, 11 pathologists WTC assessed the SLNs
in a simulated exercise. The setting resembled diagnostic prac-
tice in the Netherlands, where use of IHC is mandatory for cases
with negative findings on hematoxylin and eosin–stained
slides. Compared with the pathologist WOTC interpreting
the slides, these pathologists WTC were less accurate, espe-
cially on the slides which only contained micrometastases.
Even the best-performing pathologist on the panel missed
more than 37% of the cases with only micrometastases.
Macrometastases were much less often missed. Specificity re-
mained high, indicating that the task did not lead to a high rate
of false-positives.

The best algorithm achieved similar true-positive frac-
tion as the pathologist WOTC when producing a mean of
1.25 false-positive lesions in 100 whole-slide images and
performed better when allowing for slightly more false-
positive findings. On the slide level, the leading algorithms
performed better than the pathologists WTC in the simula-
tion exercise.

All of the 32 algorithms submitted to CAMELYON16 used
a discriminative learning approach to identify metastases in
whole-slide images. The common denominator for the algo-
rithms in the higher echelons of the ranking was that they
used advanced convolutional neural networks. Algorithms
based on manually engineered features performed less well.

Despite the use of advanced convolutional neural net-
work architectures, such as 16-layer VGG-Net,26 22-layer
GoogLeNet,24 and 101-layer ResNet,25 the ranking among
teams using these techniques varied significantly, ranging
from 1st to 29th. However, auxiliary strategies to improve

Figure 1. FROC Curves of the Top 5 Performing Algorithms
vs Pathologist WOTC for the Metastases Identification Task (Task 1)
From the CAMELYON16 Competition
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CAMELYON16 indicates Cancer Metastases in Lymph Nodes Challenge 2016;
CULab, Chinese University Lab; FROC, free-response receiver operator
characteristic; HMS, Harvard Medical School; MGH, Massachusetts General
Hospital; MIT, Massachusetts Institute of Technology; WOTC, without time
constraint. The range on the x-axis is linear between 0 and 0.125 (blue) and base
2 logarithmic scale between 0.125 and 8. Teams were those organized in the
CAMELYON16 competition. Task 1 was measured on the 129 whole-slide images
in the test data set, of which 49 contained metastatic regions. The pathologist
did not produce any false-positives and achieved a true-positive fraction of
0.724 for detecting and localizing metastatic regions.

Table 2. Test Data Set Results of the 32 Submitted Algorithms vs Pathologists for Tasks 1 and 2 in the CAMELYON16 Challengea (continued)

Codenameb

Task 1:
Metastasis
Identification

Task 2:
Metastases
Classification P Value for Comparison

of the Algorithm
vs Pathologists WTCd

Algorithm Model

Comments
FROC Score
(95% CI)c

AUC
(95% CI)c

Deep
Learning Architecture

VISILAB II 0.116
(0.063-0.177)

0.651
(0.549-0.742)

>.99 � 3-layer CNN Self-designed network architecture

Anonymous I 0.097
(0.049-0.158)

0.628
(0.530-0.717)

>.99 Random
Forests23

Laboratoire d'Imagerie
Biomédicale I

0.120
(0.079-0.182)

0.556
(0.434-0.654)

>.99 SVM22 Used various color and texture
features

Pathologist WOTC 0.724
(0.643-0.804)

0.966
(0.927-0.998)

Expert pathologist who assessed
without a time constraint

Mean pathologists WTC 0.810
(0.750-0.869)

The mean performance of 11
pathologists in a simulation exercise
designed to mimic the routine workflow
of diagnostic pathology with a flexible
2-h time limit

Abbreviations: AUC, area under the receiver operating characteristic curve;
CAMELYON16, Cancer Metastases in Lymph Nodes Challenge 2016; CAMP-TUM,
Computer Aided Medical Procedures and Augmented Reality-Technical University
of Munich; CNN, convolutional neural network; CULab, Chinese University Lab;
FROC, free-response receiver operator characteristic; HMS, Harvard Medical
School; MGH, Massachusetts General Hospital; MIT, Massachusetts Institute of
Technology; WOTC, without time constraint; WTC, with time constraint.
a For algorithms, contact information, and detailed a description of each

algorithm, see eTable 3 and eMethods in the Supplement. For a glossary
of deep learning terminology, see eAppendix in the Supplement.

b Algorithms are shown ranked highest (top of Table) to lowest (bottom of

Table) according to their performance on task 2. The submission number was
indicated in each team’s algorithm name by Roman numeral. Teams were
allowed a maximum of 3 submissions.

c The percentile bootstrap method was used to construct 95% CIs for FROC
true-positive fraction scores (FROC scores) and AUCs.

d The results of the significant test with MRMC ROC analysis for the comparison
of each individual algorithm with the pathologists WTC. The P values were
adjusted for multiple comparisons using the Bonferroni correction, in which
the P values are multiplied by the number of comparisons (32; comparison of
the 32 submitted algorithms with the panel of pathologists).
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Figure 2. Probability Maps Generated by the Top 3 Algorithms From the CAMELYON16 Competition

A Test set B HMS and MIT II C HMS and MGH III D CULab III
1.0

0.5

0
200 μm

200 μm

600 μm

250 μm

For abbreviations, see the legend of Figure 3. The color scale bar (top right) indicates
the probability for each pixel to be part of a metastatic region. For additional examples,
see eFigure 5 in the Supplement. A, Four annotated micrometastatic regions in

whole-slideimagesofhematoxylinandeosin–stainedlymphnodetissuesectionstaken
fromthetestsetofCancerMetastasesinLymphNodesChallenge2016(CAMELYON16)
dataset. B-D, Probability maps from each team overlaid on the original images.
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system generalization and performance seemed more impor-
tant. For example, team HMS and MIT improved their AUC in task
2 from 0.923 (HMS and MIT I) to 0.994 (HMS and MIT II) by add-
ing a standardization technique34 to help them deal with stain
variations. Other strategies include exploiting invariances to
augment training data (eg, tissue specimens are rotation invari-
ant) and addressing class imbalance (ie, more normal tissue than
metastases) by different training data sampling strategies (for

further examples of properties that distinguish the best-
performing methods, see eDiscussion in the Supplement).

Previous studies on diagnostic imaging tasks in which
deep learning reached human-level performance, such as de-
tection of diabetic retinopathy in retinal fundus photo-
graphs, used a reference standard based on the consensus
of human experts.3 This study, in comparison, generated a
reference standard using additional immunohistochemical

Figure 3. ROC Curves of the Top-Performing Algorithms vs Pathologists for Metastases Classification (Task 2) From the CAMELYON16 Competition

1.0

0.8

0.6

0.4

1.0

0.9

0.8

0.6

0.7

0.5

1.0

0.9

0.8

0.6

0.7

0.5

1.0

0.8

0.6

0.4

CULab III

HMS and MIT II
HMS and MGH III
HMS and MGH II

HMS and MIT I
Pathologist WOTC
Pathologist WTC

0.2

0
0 1.00.8

Se
ns

iti
vi

ty

1 – Specificity
0.60.40.2 0 0.10

1 – Specificity
0.080.060.040.02

Comparison of top 5 machine learning system teams and pathologistsA

Mean of pathologists
WTC

HMS and MIT II
HMS and MGH III
Pathologist WOTC

Pathologist with
highest AUC
Pathologist with
lowest AUC

0.2

0
0 1.00.8

Se
ns

iti
vi

ty

1 – Specificity
0.60.40.2 0 0.100.08

1 – Specificity
0.060.040.02

Comparison of top 2 machine learning system teams and pathologistsB

0.4

0.4

AUC indicates area under the receiver operating characteristic curve;
CAMELYON16, Cancer Metastases in Lymph Nodes Challenge 2016;
CULab, Chinese University Lab; HMS, Harvard Medical School;
MGH, Massachusetts General Hospital; MIT, Massachusetts Institute of
Technology; WOTC, without time constraint; WTC, with time constraint;
ROC, receiver operator characteristic. The blue in the axes on the left panels
correspond with the blue on the axes in the right panels. Task 2 was
measured on the 129 whole-slide images (for algorithms and the pathologist
WTC) and corresponding glass slides (for 11 pathologists WOTC) in the test data
set, which 49 contained metastatic regions. A, A machine-learning system
achieves superior performance to a pathologist if the operating point of the

pathologist lies below the ROC curve of the system. The top 2 deep
learning–based systems outperform all the pathologists WTC in this study.
All the pathologists WTC scored glass slide images using 5 levels of confidence:
definitely normal, probably normal, equivocal, probably tumor, definitely tumor.
To generate estimates of sensitivity and specificity for each pathologist,
negative was defined as confidence levels of definitely normal and probably
normal; all others as positive. B, The mean ROC curve was computed using the
pooled mean technique. This mean is obtained by joining all the diagnoses of
the pathologists WTC and computing the resulting ROC curve as if it were 1
person analyzing 11 × 129 = 1419 cases.

Machine Learning Detection of Breast Cancer Lymph Node Metastases Original Investigation Research

jama.com (Reprinted) JAMA December 12, 2017 Volume 318, Number 22 2207

© 2017 American Medical Association. All rights reserved.

Downloaded From:  by a Chinese University of Hong Kong User  on 12/26/2017

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2017.14585&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585
http://www.jama.com/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jama.2017.14585


staining, yielding an independent reference against which hu-
man pathologists could also be compared.

Limitations
This study has several limitations, most related to the con-
duct of these analyses as part of a simulation exercise rather
than routine pathology workflow. The test data set on which
algorithms and pathologists were evaluated was enriched with
cases containing metastases and, specifically, micrometasta-
ses and, thus, is not directly comparable with the mix of cases
pathologists encounter in clinical practice. Given the reality
that most SLNs do not contain metastases, the data set cura-
tion was needed to achieve a well-rounded representation of
what is encountered in clinical practice without including an
exorbitant number of slides. To validate the performance of
machine learning algorithms, such as those developed in the
CAMELYON16 competition, a prospective study is required. In
addition, algorithms were specifically trained to discriminate
between normal and cancerous tissue in the background of
lymph node histological architecture, but they might be un-
able to identify rare events such as co-occurring pathologies
(eg, lymphoma, sarcoma, or infection). The detection of other
pathologies in the SLN, which is relevant in routine diagnos-
tics, was not included in this study. In addition, algorithm run-
time was not recorded nor included as a factor in the evalua-
tion, but it might influence the suitability for use in, for
example, frozen section analysis.

In this study, every pathologist was given 1 single hema-
toxylin and eosin–stained slide per patient to determine the

presence or absence of breast cancer metastasis. In a real clini-
cal setting, sections from multiple levels are evaluated for ev-
ery lymph node. Also, in most hospitals pathologists request
additional IHC staining in equivocal cases. Especially for slides
containing only micrometastases, this is a relevant factor af-
fecting diagnostic performance.

In addition, the simulation exercise invited pathologists
WTC to review a series of 129 hematoxylin and eosin–
stained slides in about 2 hours to determine the presence of
macroscopic or microscopic SLN metastasis. Although fea-
sible in the context of this simulation, this does not repre-
sent the work pace in other settings. Less time constraint on
task completion may increase the accuracy of SLN diagnos-
tic review. In addition, pathologists may rely on IHC stain-
ing and the knowledge that all hematoxylin and eosin–slides
with negative findings will undergo additional review with
the use of IHC.

Conclusions
In the setting of a challenge competition, some deep learn-
ing algorithms achieved better diagnostic performance than
a panel of 11 pathologists participating in a simulation exer-
cise designed to mimic routine pathology workflow; algo-
rithm performance was comparable with an expert patholo-
gist interpreting slides without time constraints. Whether
this approach has clinical utility will require evaluation in a
clinical setting.
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